PROBABILISTIC RADIAL ELECTRON DISTRIBUTION IN MOLECULAR SYSTEMS UNDER THE INFLUENCE OF KRATZER POTENTIAL USING THE PARAMETRIC NIKIFOROV-UVAROV

  • Nani Sunarmi Program Studi Tadris Fisika, Fakultas Tarbiyah dan Ilmu Keguruan, Universitas Islam Negeri Sayyid Ali Rahmatullah Tulungagung, Indonesia

Abstract

Molecular systems influenced by the Kratzer potential have been investigated using the parametric Nikiforov-Uvarov method. This research aims to obtain the radial electron probability distribution of systems under the influence of the Kratzer potential without modifications, and to perform simulations of the radial probability distribution for oxygen, iodine, carbon monoxide, and nitrogen monoxide molecules. The radial electron probability distribution is obtained through the solution of the Schrodinger equation in the radial component. The radial component of the Schrodinger equation is obtained by separating the molecular system Schrodinger equation into three components: radial, zenithal, and azimuthal. The solution of the radial Schrodinger equation yields a radial wave equation, where the square of the absolute value provides the radial probability distribution of the electron's position with respect to the atomic nucleus. The solution to the radial component of the Schrodinger equation is achieved by applying the parametric Nikiforov-Uvarov method. Solving the radial component of the Schrodinger equation involves reducing the equation to a hypergeometric-type differential equation. Numerical computations and graphical simulations of the radial probability distribution are performed using the Matlab software. The research results indicate that the solutions for the radial electron probability distribution depend on spectroscopic parameters such as dissociation energy, equilibrium bond length, and molecular mass, as well as quantum numbers such as vibrational quantum number (n) and azimuthal quantum number (l). Iodine molecules exhibit the highest amplitude in the probability distribution plot compared to oxygen, carbon monoxide, and nitrogen monoxide.

References

[1] I. B. Okon, O. Popoola, dan C. N. Isonguyo, “Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method,” Adv. High Energy Phys., vol. 2017, 2017, doi: 10.1155/2017/9671816.
[2] R. E. Siregar, Fisika Kuantum. Jatinagor: Universitas Padjajaran, 2018.
[3] N. Sunarmi, “Analisis Persamaan Energi Menggunakan Metode Parametrik Nikiforov-Uvarov Untuk Atom Berelektron Tunggal Dengan potensial Hulthen,” J. Pendidik. Fis. dan Sains, vol. 5, no. 2, hal. 68–74, Sep 2022, doi: 10.52188/jpfs.v5i2.275.
[4] Sutopo, Pengantar Fisika Kuantum. Malang: Jurusan Fisika FMIPA UM, 2005.
[5] S. A. Karomah, A. R. Jannah, N. R. Aini, R. Zumarotin, dan N. Sunarmi, “Visualisasi Rapat Peluang Posisi Elektron terhadap Sudut pada Atom Deuterium,” Newthon-Maxwell J. Phys., vol. 2, no. 2, hal. 35–44, 2021.
[6] E. Rusmini et al., “Visualisasi osilator harmonik kuantum dengan polinomial hermitte menggunakan simulasi pemrograman matlab,” J. MIPA dan Pembelajarannya, vol. 2, no. 3, hal. 183–189, 2022, doi: 10.17977/ um067v2i3p183-189.
[7] C. P. Onyenegecha, I. J. Njoku, A. Omame, C. J. Okereke, dan E. Onyeocha, “Dirac equation and thermodynamic properties with the Modified Kratzer potential,” Heliyon, vol. 7, no. 9, hal. e08023, 2021, doi: 10.1016/j.heliyon.2021.e08023.
[8] I. O. Akpan, E. P. Inyang, dan E. S. William, “Approximate solutions of the Schrödinger equation with Hulthén-Hellmann potentials for a quarkonium system,” Rev. Mex. Fis., vol. 67, no. 3, hal. 482–490, 2021, doi: 10.31349/RevMexFis.67.482.
[9] A. D. Antia, I. B. Okon, A. O. Akankpo, dan J. B. Usanga, “Non-Relativistic Bound State Solutions of Modified Quadratic Yukawa plus <i>q</i>-Deformed Eckart Potential,” J. Appl. Math. Phys., vol. 08, no. 04, hal. 660–671, 2020, doi: 10.4236/jamp.2020.84051.
[10] A. Suparmi, L. K. Permatahati, S. Faniandari, Y. Iriani, dan A. Marzuki, “Study of Bohr Mottelson Hamiltonian with minimal length effect for Woods-Saxon potential and its thermodynamic properties,” Heliyon, vol. 7, no. 5, hal. e06861, 2021, doi: 10.1016/j.heliyon.2021.e06861.
[11] N. Sunarmi, S. Suparmi, dan C. Cari, “Solusi Persamaan Schrödinger untuk Potensial Hulthen + Non-Sentral Poschl-Teller dengan Menggunakan Metode Nikiforov-Uvarov,” Indones. J. Appl. Phys., vol. 3, no. 2, hal. 169–180, 2013, doi: 10.13057/ijap.v3i02.1266.
[12] E. Omugbe, “Non-relativistic Energy Spectrum of the Deng-Fan Oscillator via the WKB Approximation Method,” Asian J. Phys. Chem. Sci., hal. 26–36, 2020, doi: 10.9734/ajopacs/2020/v8i130107.
[13] A. N. Ikot et al., “Bound state solutions of the Schrödinger equation with energy-dependent molecular Kratzer potential via asymptotic iteration method,” Eclet. Quim., vol. 45, no. 1, hal. 65–76, 2020, doi: 10.26850/1678-4618eqj.v45.1.p65-76.
[14] K. R. Purohit, R. H. Parmar, dan A. K. Rai, “Energy and momentum eigenspectrum of the Hulthén-screened cosine Kratzer potential using proper quantization rule and SUSYQM method,” J. Mol. Model., vol. 27, no. 12, 2021, doi: 10.1007/s00894-021-04965-0.
[15] S. N. Fitriani dan Suparmi, “Solusi Persamaan Dirac Dengan Spin Simetri Untuk Potensial Scarf Ii Hiperbolik Terdeformasi-Q Plus Tensor Tipe Coulomb Dengan Menggunakan Metode Nikiforov Uvarov,” Kappa J., vol. 1, no. 1, hal. 13, 2017, doi: 10.29408/kappa.v1i1.407.
[16] M. R. Setare dan E. Karimi, “Algebraic approach to the Kratzer potential,” Phys. Scr., vol. 75, no. 1, hal. 90–93, 2007, doi: 10.1088/0031-8949/75/1/015.
[17] C. Berkdemir, Theoretical Concepts of Quantum Mechanics. USA: InTech, 2012.
[18] N. Ibrahim, U. S. Okorie, N. Sulaiman, G. J. Rampho, dan M. Ramantswana, “Solutions of the Schrodinger equation of the shifted screened Kratzer potential and its thermodynamic functions using the extended Nikiforov–Uvarov method,” Front. Phys., vol. 10, no. September, hal. 1–12, 2022, doi: 10.3389/fphy.2022.988279.
[19] S. M. Ikhdair dan R. Sever, “Exact solutions of the modified kratzer potential plus ring-shaped potential in the D-dimensional Schrödinger equation by the nikiforovuvarov method,” Int. J. Mod. Phys. C, vol. 19, no. 2, hal. 221–235, 2008, doi: 10.1142/S0129183108012030.
[20] A. F. Nikiforov dan V. B. Uvarov, Special Functions of Mathematical Physics: A Unified Introduction with Applications. Birkhauser: Birkhauser Verlag Basel, 1988.
[21] B. I. Ita, H. Louis, dan T. O. Magu, “Bound State Solutions of the Klein Gordon Equation with Woods-Saxon Plus Attractive Inversely Quadratic Potential Via Parametric Nikiforov-Uvarov Method,” World Sci. News, vol. 74, hal. 280–287, 2017.
[22] I. B. Okon, E. Omugbe, A. D. Antia, C. A. Onate, L. E. Akpabio, dan O. E. Osafile, “Spin and pseudospin solutions to Dirac equation and its thermodynamic properties using hyperbolic Hulthen plus hyperbolic exponential inversely quadratic potential,” Sci. Rep., vol. 11, no. 1, hal. 1–21, 2021, doi: 10.1038/s41598-020-77756-x.
[23] I. B. Okon, A. D. Antia, A. O. Akankpo, dan I. E. Essien, “Eigen-Solutions to Schrodinger Equation with Trigonometric Inversely Quadratic Plus Coulombic Hyperbolic Potential,” Phys. Sci. Int. J., vol. 24, no. 3, hal. 61–75, 2020, doi: 10.9734/psij/2020/v24i330183.
[24] M. Abu-Shady dan H. . Fath-Allah, “The Parametric Generalized Fractional Nikiforov-Uvarov Method And Its Applications,” EAST Eur. J. PHYSICS., vol. 3, hal. 248–262, 2023, doi: 10.26565/2312-4334-2023-3-22.
[25] N. Sunarmi, “Simulasi Penyelesaian Tingkat Energi Sistem Molekul Dalam Pengaruh Pengaruh Potensial Kratzer Dengan Metode Parametrik Nikiforov-Uvarov,” ORBITA J. Has. Kaji. Inov. dan Apl. Pendidik. Fis., vol. 8, no. 2, hal. 383–389, 2022, doi: https://doi.org/10.31764/orbita.v8i2.11452.
[26] M. L. Boas, Mathematical Methods in the Physical Sciences, 3 ed. USA: John Wiley & Sons, Inc, 1983.
Published
2023-12-18
How to Cite
Sunarmi, N. (2023). PROBABILISTIC RADIAL ELECTRON DISTRIBUTION IN MOLECULAR SYSTEMS UNDER THE INFLUENCE OF KRATZER POTENTIAL USING THE PARAMETRIC NIKIFOROV-UVAROV. Jurnal Inovasi Pendidikan Dan Sains, 4(3), 151-158. https://doi.org/10.51673/jips.v4i3.1794
Section
Artikel