MEASUREMENT OF REFRACTIVE INDEX OF WATER IN COASTAL AREA USING He-Ne LASER AND HOLLOW PRISM
Abstract
water samples used were taken from three coastal areas of Aceh, namely Tibang, Uleelheue, and Kaju. Water is taken from 3 different water sources for each area of the region. Initial measurements were made for distilled water to see the accuracy of using a hollow prism made of commercial glass. The water sample is inserted into a hollow prism made of commercial glass with an angle of 450. The helium-neon laser beam with a wavelength of 564 nm is directed to the hollow prism so that it undergoes refraction. The measurement results on the distilled water sample obtained a refractive index of 1.33, the result is the same as the measurement using the Abbe refractometer. Meanwhile, the measurement results found that the refractive index of water taken from water sources in the coastal area has a relatively similar index of refraction. The refractive index of water taken from three coastal areas ranged from 1.341 to 1.349. The value of the refractive index of water is also affected by the level of mineral content and the level of saltiness
References
[2]. Bahagia, Yunita, I., & Ruslin. (2018). Analisa Kualitas Air Sumur Pemukiman Kumuh Gampong Beurawe Kota Banda Aceh. Serambi Engineering, III(Edisi Khusus), 285–291.
[3]. Anggeraeni, R. W., Rachma, A. J., Ustati, R. T., & Astuti, I. A. D. (2020). Analisis Kualitas Air Sungai Ciliwung ditinjau dariParameter pH dan Kekeruhan Air Berbasis Logger Pro. Pro s i d i Ng S Emi Na r Na s i on a l S a i n s Analisis, 1(1), 29–38. http://proceeding.unindra.ac.id/index.php/sinasis/article/view/4012/610
[4]. Croccolo, F., Arnaud, M.-A., Bégué, D., & Bataller, H. (2011). Concentration dependent refractive index of a binary mixture at high pressure. The Journal of Chemical Physics, 135(3), 034901. https://doi.org/10.1063/1.3610368
[5]. Huang, M., Sun, C., Qin, H., & Jiang, Z. (2023). Measurement of liquid refractive index by quantitative phase reconstruction of single frame dual-wavelength digital hologram. Measurement, 206, 112325. https://doi.org/10.1016/j.measurement.2022.112325
[6]. Jericho, M. H., Kreuzer, H. J., Kanka, M., & Riesenberg, R. (2012). Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy. Applied Optics, 51(10), 1503. https://doi.org/10.1364/AO.51.001503
[7]. Zhao, Y., Zhang, B., & Liao, Y. (2003). Experimental research and analysis of salinity measurement based on optical techniques. Sensors and Actuators B: Chemical, 92(3), 331–336. https://doi.org/10.1016/S0925-4005(03)00292-2
[8]. Yin, G., Lou, S., & Zou, H. (2013). Refractive index sensor with asymmetrical fiber Mach–Zehnder interferometer based on concatenating single-mode abrupt taper and core-offset section. Optics & Laser Technology, 45, 294–300. https://doi.org/10.1016/j.optlastec.2012.06.032
[9]. Jiménez-Márquez, F., Vázquez, J., Úbeda, J., & Sánchez-Rojas, J. L. (2014). High-resolution low-cost optoelectronic instrument for supervising grape must fermentation. Microsystem Technologies, 20(4–5), 769–782. https://doi.org/10.1007/s00542-013-2033-3
[10]. Tengesdal, Ø. A., Hauge, B. L., & Helseth, L. E. (2014). Electromagnetic and Optical Methods for Measurements of Salt Concentration of Water. Journal of Electromagnetic Analysis and Applications, 06(06), 130–139. https://doi.org/10.4236/jemaa.2014.66013
[11]. Guo, W., Li, R., Yu, L., Chen, J., Xia, M., Li, W., & Yang, K. (2019). Self-referenced technology for refractive index measurement under mechanical vibration and temperature fluctuation. Applied Optics, 58(7), 1862. https://doi.org/10.1364/AO.58.001862
[12]. Ye, J., Yang, K., Liu, H., Dai, J., Guo, W., Li, W., & Xia, M. (2015). Expand the measurement range of a critical angle refractometer by a centroid method for transparent fluids. Optics & Laser Technology, 65, 175–179. https://doi.org/10.1016/j.optlastec.2014.07.013
[13]. Liu, H., Yang, K., Guo, W., Dai, J., Ye, J., Li, W., & Xia, M. (2013). An experimental calibration method for digital Abbe refractometer (J. Ohta, N. Wu, & B. Li (eds.); p. 89081Z). https://doi.org/10.1117/12.2034682
[14]. Jiménez-Márquez, F., Vázquez, J., Úbeda, J., & Sánchez-Rojas, J. L. (2013). Low-cost and portable refractive optoelectronic device for measuring wine fermentation kinetics. Sensors and Actuators, B: Chemical, 178, 316–323. https://doi.org/10.1016/j.snb.2012.12.091
[15]. Mulyawan, R. G., & Hakimi, A. R. (2019). Simple Application of Time Correlated Single Photon Counter of Picosecond Pulsed Laser to Measure Refractive Index of Saline Solution. 09(02), 105–113. https://doi.org/10.26740/jpfa.v9n2.p105
[16]. Li, J., Qu, H., & Skorobogatiy, M. (2015). Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers. Optics Express, 23(18), 22963. https://doi.org/10.1364/OE.23.022963
[17]. Idris, N, Maswati, & Yusibani, E. (2018). Influence of the apex angle of a hollow prism made from an ordinary commercial glass plate as a simple refractometer to the accuracy of the refractive index measurement of the edible oil. IOP Conference Series: Materials Science and Engineering, 352, 012045. https://doi.org/10.1088/1757-899X/352/1/012045
[18]. Idris, Nasrullah. (2017). Pengembangan Alat Ukur Indeks Bias Menggunakan Prisma Berongga dari Lembaran Kaca Komersial Biasa dan Laser He-Ne untuk Pengujian Kualitas Minyak Goreng. Risalah Fisika, 1. https://doi.org/10.35895/rf.v1i2.45
[19]. Nasir, M. (2020). Perbandingan Kualitas Minyak Sawit Bermerk dan Minyak Kelapa Menggunakan Parameter Viskositas dan Indeks Bias. Sainstek : Jurnal Sains Dan Teknologi, 12(2), 36. https://doi.org/10.31958/js.v12i2.2470
[20]. Peter J. Nolan. (2005). Fundamentals of College Physics, Vol. 1,5th Updated Edition. In Paper Knowledge . Toward a Media History of Documents.
[21]. Sharma, K. (2006). Optics Principles and Applications (1st ed.). Academic Press. https://www.elsevier.com/books/optics/sharma/978-0-12-370611-9